Physicists make ‘impossible’ superconductor discovery that could make computers hundreds of times faster

Low-waste, high-speed circuits could be possible with the discovery of one-way superconductivity

Adam Smith
Thursday 28 April 2022 10:11 EDT
Comments
(TU Delft)

Your support helps us to tell the story

From reproductive rights to climate change to Big Tech, The Independent is on the ground when the story is developing. Whether it's investigating the financials of Elon Musk's pro-Trump PAC or producing our latest documentary, 'The A Word', which shines a light on the American women fighting for reproductive rights, we know how important it is to parse out the facts from the messaging.

At such a critical moment in US history, we need reporters on the ground. Your donation allows us to keep sending journalists to speak to both sides of the story.

The Independent is trusted by Americans across the entire political spectrum. And unlike many other quality news outlets, we choose not to lock Americans out of our reporting and analysis with paywalls. We believe quality journalism should be available to everyone, paid for by those who can afford it.

Your support makes all the difference.

Physicists have developed a superconductor circuit that was previously thought to be impossible.

The discovery of one-way superconductivity could mean that low-waste, high-speed circuits are possible and could revolutionise computing by making electronics hundreds of times faster without any energy loss.

Superconductors are made with a current that goes through a wire without any resistance, which makes blocking the current close to impossible. Making the current flow in only one direction is an even harder challenge, but one that is necessary for computers.

“Technology which was previously only possible using semi-conductors can now potentially be made with superconductors using this building block. This includes faster computers, as in computers with up to terahertz speed, which is 300 to 400 times faster than the computers we are now using,” Associate Professor Mazhar Ali, who made the discovery with a research group at Delft University of Technology, said.

“This will influence all sorts of societal and technological applications. If the 20th century was the century of semi-conductors, the 21st can become the century of the superconductor.”

The researchers made a 2D lattice based on the metal niobium, which could create a ‘supercurrent’ with no voltage that could be used in quantum computing.

However, it will still take time before this makes its way to the next generation of technology. These materials have to be kept at cold temperatures to be superconductive, and while some can deal with heat it is only under huge amounts of pressure.

This is because, normally, as an electric current flows through a wire the electrons face resistance that becomes heat. Once it reaches a critically low temperature though, that resistance becomes functionally nothing. It is possible that this means current can flow through a wire forever without dissipating.

“For server farms or for supercomputers, it would be smart to implement this. Centralized computation is really how the world works now-a-days. Any and all intensive computation is done at centralized facilities where localization adds huge benefits in terms of power management [and] heat management,” Ali says.

“The existing infrastructure could be adapted without too much cost to work with Josephson diode based electronics. There is a very real chance, if the challenges discussed in the other question are overcome, that this will revolutionize centralized and supercomputing.”

Join our commenting forum

Join thought-provoking conversations, follow other Independent readers and see their replies

Comments

Thank you for registering

Please refresh the page or navigate to another page on the site to be automatically logged inPlease refresh your browser to be logged in