Scientists see the 'rarest event ever recorded' in attempt to solve dark matter mystery
Process seen by scientists takes one trillion times the age of the universe
Your support helps us to tell the story
From reproductive rights to climate change to Big Tech, The Independent is on the ground when the story is developing. Whether it's investigating the financials of Elon Musk's pro-Trump PAC or producing our latest documentary, 'The A Word', which shines a light on the American women fighting for reproductive rights, we know how important it is to parse out the facts from the messaging.
At such a critical moment in US history, we need reporters on the ground. Your donation allows us to keep sending journalists to speak to both sides of the story.
The Independent is trusted by Americans across the entire political spectrum. And unlike many other quality news outlets, we choose not to lock Americans out of our reporting and analysis with paywalls. We believe quality journalism should be available to everyone, paid for by those who can afford it.
Your support makes all the difference.Scientists have spotted the "rarest event ever recorded", in a major breakthrough as part of attempts to solve a dark matter mystery.
The process takes more than one trillion times the age of the universe. And it has been spotted by scientists for the first time.
The breakthrough discovery was made by scientists who worked with a special instrument, built to track down dark matter, the most elusive particle in the universe.
The all-important event was the radioactive decay of xenon-124.
"We actually saw this decay happen. It's the longest, slowest process that has ever been directly observed, and our dark matter detector was sensitive enough to measure it," said Ethan Brown, an assistant professor of physics at Rensselaer, and co-author of the study.
"It's an amazing to have witnessed this process, and it says that our detector can measure the rarest thing ever recorded."
The research came from the XENON Collaboration, which runs an instrument known as XENON1T. That is a 1,300-kilogram vat fille dwith super-pure liquid xenon, which can be shielded from cosmic rays by being buried in water, 1,500 meters beneath the Gran Sasso mountains in Italy.
It is run by scientists looking for dark matter, which is five times more abundant than ordinary matter, but has never been directly observed. They hope to study it by watching for the little flashes of light that are created when particles hit the xenon inside the detector.
Though it is looking for the interaction between dark matter particles and the nucleus inside the xenon atoms, it can actually see any signals that happen inside the tub.
It was one of those interactions that scientists spotted, when they saw a proton inside the nucleus of a xenon atom change into a neutron. That happens as a consequence of a very rare event: when a proton absorbs two electrons, which is called "double-electron capture".
That can only happen when two of those electrons are right next to the nucleus, at exactly the right time. That is "a rare thing multiplied by another rare thing, making it ultra-rare", Brown said.
Scientists spotted those electrons re-arranging as they made way for the two electrons that had been absorbed into the nucleus.
"Electrons in double-capture are removed from the innermost shell around the nucleus, and that creates room in that shell," said Brown. "The remaining electrons collapse to the ground state, and we saw this collapse process in our detector."
The discovery allows scientists to see the half-life of the xenon isotope directly, watching its radioactive decay as it happens. Such an achievement has never been possible before, the researchers said.
"This is a fascinating finding that advances the frontiers of knowledge about the most fundamental characteristics of matter," said Curt Breneman, dean of the School of Science. "Dr. Brown's work in calibrating the detector and ensuring that the xenon is scrubbed to the highest possible standard of purity was critical to making this important observation."
Join our commenting forum
Join thought-provoking conversations, follow other Independent readers and see their replies
Comments