Scientists solve battery mystery – allowing for ultra-fast charging breakthrough

Stanford University team says solution could transform electric car industry

Anthony Cuthbertson
Monday 30 January 2023 11:39 EST
Comments
Related video: How long do EV batteries last?

Your support helps us to tell the story

This election is still a dead heat, according to most polls. In a fight with such wafer-thin margins, we need reporters on the ground talking to the people Trump and Harris are courting. Your support allows us to keep sending journalists to the story.

The Independent is trusted by 27 million Americans from across the entire political spectrum every month. Unlike many other quality news outlets, we choose not to lock you out of our reporting and analysis with paywalls. But quality journalism must still be paid for.

Help us keep bring these critical stories to light. Your support makes all the difference.

Scientists say they have finally figured out how to overcome a major barrier to ultra-fast battery charging.

The mysterious short circuiting and failure of next-generation lithium metal batteries was solved by a team from Stanford University and SLAC National Accelerator Laboratory in the US, who said their findings could have major implications for the electric car industry.

Rechargeable lithium metal batteries are lightweight, inflammable, hold a lot of energy and can be charged very quickly, however until now they have been unsuitable for commercial use due to mechanical stress experienced while charging.

“Just modest indentation, bending or twisting of the batteries can cause nanoscopic fissures in the materials to open and lithium to intrude into the solid electrolyte causing it to short circuit,” said Associate Professor William Chueh at the Stanford Doerr School of Sustainability.

“Even dust or other impurities introduced in manufacturing can generate enough stress to cause failure.”

The phenomenon has puzzled researchers for years, with some hypothesising that it was due to the unintended flow of electrons, while others claimed it was a chemical issue.

The Stanford scientists undertook a series of 60 experiments to prove that the problems were in fact caused by nanoscopic cracks, dents and fissures within ceramic electrolytes.

“Given the opportunity to burrow into the electrolyte, the lithium will eventually snake its way through, connecting the cathode and anode,” said Geoff McConohy, who used to work in Associate Professor Cheuh’s lab but now works in industry. “When that happens, the battery fails.”

The research was detailed in a study, titled ‘Mechanical regulation of lithium intrusion probability in garnet solid electrolytes, published in the scientific journal Nature Energy on Monday.

Join our commenting forum

Join thought-provoking conversations, follow other Independent readers and see their replies

Comments

Thank you for registering

Please refresh the page or navigate to another page on the site to be automatically logged inPlease refresh your browser to be logged in