Stay up to date with notifications from The Independent

Notifications can be managed in browser preferences.

Mystery behind one of Earth’s oldest star sand dunes revealed

Researchers estimate age of star dune called Lala Lallia, Morocco

Vishwam Sankaran
Monday 04 March 2024 00:57 EST
Comments
Related video: Girl falls while surfing down a sand dune!

Your support helps us to tell the story

From reproductive rights to climate change to Big Tech, The Independent is on the ground when the story is developing. Whether it's investigating the financials of Elon Musk's pro-Trump PAC or producing our latest documentary, 'The A Word', which shines a light on the American women fighting for reproductive rights, we know how important it is to parse out the facts from the messaging.

At such a critical moment in US history, we need reporters on the ground. Your donation allows us to keep sending journalists to speak to both sides of the story.

The Independent is trusted by Americans across the entire political spectrum. And unlike many other quality news outlets, we choose not to lock Americans out of our reporting and analysis with paywalls. We believe quality journalism should be available to everyone, paid for by those who can afford it.

Your support makes all the difference.

Scientists have calculated the age of one of the Earth’s oldest dunes for the first time, an advance that could shed more light on climate and wind conditions thousands of years ago.

Star dunes are the tallest and most complex type of desert sand formations, reaching hundreds of meters in height.

They are named so due to their pyramidal form and radiating arms and are widespread in deserts including the sand seas of Africa, Arabia, China, and North America, as well as on Mars and Saturn’s moon Titan.

Star dunes are created by opposing winds changing direction but they have previously not been dated.

Now, researchers have estimated for the first time the age of one such star dune called Lala Lallia in Morocco.

They found that the star dune formed 13,000 years ago in the Erg Chebbi sand sea in southeast Morocco, now reaching about 100 m high and 700m wide.

Scientists found that the sands have grown rapidly within the past 1000 years, which is migrating towards the west.

Florida beaches lose sand amid storms

The latest findings, according to researchers, support the theory that the star dune’s formation was accompanied by a change in wind directions over the years.

The study could enable the identification of star dunes in future studies of the rock record.

Researchers estimated that the 100 m tall dune likely stopped growing for about 8,000 years, and then expanded quickly in the following several thousand years.

This period when the dune stopped growing is marked by scattered pottery fragments to the east side of the sand formation.

This suggests there may have been wetter conditions when the dune was likely to have been stabilised by vegetation.

The findings also raise questions about how such a tall dune formed and kept moving at about 50cm each year.

In the study, scientists used a new technique to date the dines in which they estimated when grains of sand were last exposed to daylight.

The sand grains tend to absorb radiation from their surroundings which they release in the lab under specific conditions.

If they remain buried for longer periods, they absorb more radiation, helping create a timeline of the layers of sand.

The brighter the glow from some grains, the older they are.

Using this, researchers could assess the energy different layers released to calculate their age.

“At the base of the dune, there is an ~ 8000-year hiatus in the record. Since then, the dune has grown rapidly to create a 100 m high dune within the past 1000 years and is migrating towards the west,” scientists wrote in the study.

Join our commenting forum

Join thought-provoking conversations, follow other Independent readers and see their replies

Comments

Thank you for registering

Please refresh the page or navigate to another page on the site to be automatically logged inPlease refresh your browser to be logged in