Stay up to date with notifications from The Independent

Notifications can be managed in browser preferences.

Trees adapt to high carbon dioxide levels by storing water

Samuel Webb
Thursday 02 February 2023 14:51 EST
Comments
Chile forest fires

Your support helps us to tell the story

From reproductive rights to climate change to Big Tech, The Independent is on the ground when the story is developing. Whether it's investigating the financials of Elon Musk's pro-Trump PAC or producing our latest documentary, 'The A Word', which shines a light on the American women fighting for reproductive rights, we know how important it is to parse out the facts from the messaging.

At such a critical moment in US history, we need reporters on the ground. Your donation allows us to keep sending journalists to speak to both sides of the story.

The Independent is trusted by Americans across the entire political spectrum. And unlike many other quality news outlets, we choose not to lock Americans out of our reporting and analysis with paywalls. We believe quality journalism should be available to everyone, paid for by those who can afford it.

Your support makes all the difference.

Trees living in conditions where the carbon dioxide levels are high are becoming more efficient in conserving water, a study has found.

A team at the University of Birmingham found trees under increased CO2 treatment were able to increase their water use efficiency by increasing their carbon uptake while conserving water by adjusting the opening and closing of pores on the leaves, called stomata.

In a study published in New Phytologist, the researchers found that, contrary to previous assumptions, these responses were similar across all the tree types studied.

The results offer fresh approaches to modelling and predicting plant behaviour under increased C02 conditions. It offers a new piece of the puzzle for plant scientists working to build a more complete picture of how our forests will respond to atmospheric conditions expected to be the norm by 2050.

“The models we use to predict the responses of trees to future atmospheric CO2 levels still contain lots of uncertainties – and the behaviour of stomata is one of these,” said Dr Anna Gardner, of the Birmingham Institute of Forest Research, who led the study.

“In elevated CO2 we might expect water consumption to reduce because stomata are taking in CO2 at a higher concentration so do not have to be open as long.

“But actually, we found the increased CO2 also caused an increase in photosynthesis – and this behaviour was a stronger driver to increase water use efficiency. In effect, under higher CO2, the trees are getting more carbon gain for each ‘buck’ of water spent.”

The trade off – important to plants across the globe – is between carbon gain and water loss. This compromise exists as a result of the plant’s structure: stomata open and close to allow plants to take in CO2 for growth, but as the stomata are open, water is able to leave the plant via transpiration.

That means the plant must compromise between absorbing the maximum amount of CO2, while also minimising water loss.

The researchers analysed data on long-term elevated CO2 experiments in trees over the past 20 years. The analysis spanned 16 different sites worldwide and included data from experiments looking at whole trees to smaller branch and leaf data collection.

Taking all the data into account, the researchers found the efficiency of water use in the trees’ leaves increased by 85% for a doubling of CO2, which is the CO2 increase expected by mid-century compared to the pre-industrial average.

Dr Gardner added: “One reason trees are so important to ecosystems is because they store carbon – but water is also a valuable resource, so we need to find ways to accurately calculate the carbon cost of that water.

“All this data helps us build a more accurate picture of the likely behaviour of these resources in the future.”

Join our commenting forum

Join thought-provoking conversations, follow other Independent readers and see their replies

Comments

Thank you for registering

Please refresh the page or navigate to another page on the site to be automatically logged inPlease refresh your browser to be logged in