Serendipity: Nature's error- correction

Simon Singh
Saturday 29 May 1999 18:02 EDT
Comments

Your support helps us to tell the story

From reproductive rights to climate change to Big Tech, The Independent is on the ground when the story is developing. Whether it's investigating the financials of Elon Musk's pro-Trump PAC or producing our latest documentary, 'The A Word', which shines a light on the American women fighting for reproductive rights, we know how important it is to parse out the facts from the messaging.

At such a critical moment in US history, we need reporters on the ground. Your donation allows us to keep sending journalists to speak to both sides of the story.

The Independent is trusted by Americans across the entire political spectrum. And unlike many other quality news outlets, we choose not to lock Americans out of our reporting and analysis with paywalls. We believe quality journalism should be available to everyone, paid for by those who can afford it.

Your support makes all the difference.

CHANCE meetings between researchers from different backgrounds, one of them unwittingly holding the missing piece of the other's jigsaw, can result in significant discoveries. Just such a meeting occurred in a bar at Bradford University, between Dr Simon Shepherd and Professor Terry Baker.

Shepherd, a computer scientist, specialises in techniques for spotting and correcting errors in information. These so-called error-correction techniques are ubiquitous, and are essential for the efficient operation of everything from CDs to the Internet. Even International Standard Book Numbers (ISBNs) have in-built error- correction. The ISBN consists of 10 digits (occasionally one of the digits is an X, which stands for 10), and you can test the error- correction for yourself by looking at any book.

Moving from right to left, take the first ISBN digit, multiply it by one and note the result, then take the second digit, multiply it by two and note the result. Continue in this fashion until the 10th digit, which you multiply by 10. Then add all the results together. The total will be a multiple of 11. Therefore, each time an ISBN is typed into a cash register, the register can do a quick calculation, and if it sees that the total is not a multiple of 11, it knows that the ISBN is wrong and asks for a correction.

In 1994, Shepherd was chatting to Professor Baker, a biologist. Baker was explaining how certain sections of our DNA, genes, carry the information required to build a working human being. However, in between the genes are vast strands of seemingly useless DNA. Baker, along with all other biologists, was perplexed by this so-called junk DNA, because it requires a great deal of energy to make but seems to contribute nothing. One theory was that it contained the leftovers of millions of years of evolutionary dead ends, but experts argued that we were unlikely to carry so much redundant genetic baggage around.

When Shepherd heard about the problem, it was clear to him that junk DNA must perform some kind of error-correction. The useful bits of the DNA are the blueprints for making vital proteins, and Shepherd argued that the junk is there to prevent mistakes occurring during manufacture. This explained why so many genetic experiments had been failing. The intricate activities of genes are highly prone to errors, and genetic engineers had been transplanting genes without the associated error-correcting DNA. As a result, the transplanted genes were not working properly.

However, one mystery remains. The mechanism behind ISBN error-correction is clear but, unfortunately, the mechanism behind DNA error-correction is unknown. Scientists now acknowledge that junk DNA prevents errors, but they have no idea how it works.

Join our commenting forum

Join thought-provoking conversations, follow other Independent readers and see their replies

Comments

Thank you for registering

Please refresh the page or navigate to another page on the site to be automatically logged inPlease refresh your browser to be logged in